Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
نویسندگان
چکیده
Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired. This is however not always available in practice. In this paper, we propose to improve ODF estimation by using inter-subject image correlation. Specifically, we demonstrate that diffusion-weighted images acquired from different subjects can be transformed to the space of a target subject to drastically increase the number of angular samples to improve ODF estimation. This is largely due to the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. To reorient the diffusion signals, we propose a new spatial normalization method that directly acts on diffusion signals using local affine transforms. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملIn vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qPFG) diffusion MRI on a clinical scanner
We report our design and implementation of a quadruple pulsed-field gradient (qPFG) diffusion MRI pulse sequence on a whole-body clinical scanner and demonstrate its ability to non-invasively detect restriction-induced microscopic anisotropy in human brain tissue. The microstructural information measured using qPFG diffusion MRI in white matter complements that provided by diffusion tensor imag...
متن کاملMagnetic susceptibility anisotropy: Cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations
White matter is an essential component of the central nervous system and is of major concern in neurodegenerative diseases such as multiple sclerosis (MS). Recent MRI studies have explored the unique anisotropic magnetic properties of white matter using susceptibility tensor imaging. However, these measurements are inhibited in practice by the large number of different head orientations needed ...
متن کاملDirect Estimation of Fiber Orientations Using Deep Learning in Diffusion Imaging
An effective technique for investigating human brain connectivities, is the reconstruction of fiber orientation distribution functions based on diffusion-weighted MRI. To reconstruct fiber orientations, most current approaches fit a simplified diffusion model, resulting in an approximation error. We present a novel approach for estimating the fiber orientation directly from raw data, by convert...
متن کاملDetermining Cardiac Fiber Orientation Using FSL and Registered Ultrasound/DTI volumes.
Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In ord...
متن کامل